Fast single-charge sensing with a rf quantum point contact

D. J. Reilly, C. M. Marcus, M. P. Hanson, and A. C. Gossard

Citation: Applied Physics Letters 91, 162101 (2007); doi: 10.1063/1.2794995
View online: http://dx.doi.org/10.1063/1.2794995
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/91/16?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in

Single shot charge detection using a radio-frequency quantum point contact

Detection of charge states in nanowire quantum dots using a quantum point contact
Appl. Phys. Lett. 90, 172112 (2007); 10.1063/1.2732829

Electrostatic cross-talk between quantum dot and quantum point contact charge read-out in few-electron quantum dot circuits
J. Appl. Phys. 96, 7352 (2004); 10.1063/1.1814811

Engineering the quantum point contact response to single-electron charging in a few-electron quantum-dot circuit

Quantum point contact transistor with high gain and charge sensitivity
Fast single-charge sensing with a rf quantum point contact

D. J. Reilly and C. M. Marcus
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

M. P. Hanson and A. C. Gossard
Department of Materials, University of California, Santa Barbara, California 93106, USA

(Received 21 July 2007; accepted 28 August 2007; published online 15 October 2007)

We report high-bandwidth charge sensing measurements using a GaAs quantum point contact embedded in a radio frequency impedance matching circuit (rf-QPC). With the rf-QPC biased near pinch-off where it is most sensitive to charge, we demonstrate a conductance sensitivity of $5 \times 10^{-6} e^2/h$ Hz$^{-1/2}$ with a bandwidth of 8 MHz. Single-shot readout of a proximal few-electron double quantum dot is investigated in a mode where the rf-QPC back action is rapidly switched.

instance, a $dg_{\text{QPC}}=0.01 e^2/h$ conductance change to be measured with unity SNR in $t_{\text{int}}=500$ ns. Above ~ 8 MHz, the Q factor (~ 15) of the impedance matching circuit limits the sensitivity, as shown in Fig. 2(b). The SNR increases with applied carrier power [Fig. 2(c)] up to the energy scale set by the one-dimensional subband spacing (typically several millivolts). A source-drain bias of 1 mV requires a carrier power of approximately -70 dBm. For the charge sensing measurements described below, carrier power was set to -75 dBm. For this power, $\sim 80\%$ of the output noise is the intrinsic shot noise of the QPC. Figure 2(d) shows the dependence of the sideband SNR on carrier frequency, consistent with reflected power measurements [Fig. 1(c)].

We demonstrate the operation of the rf-QPC by detecting single-electron changes in charge configuration of a double quantum dot in the few-electron regime. For this demonstration, the QPC was biased on the steep edge of a conductance riser at $g_{\text{QPC}}\sim 0.3 e^2/h$, where the conductance is a sensitive function of the local electrostatic potential [see Fig. 1(d)]. Figure 3 shows dV_{rf}/dV_L as a function of gate voltages V_L and V_R, which control the number of electrons in the left and right dots. Stable charge configurations of the double dot correspond to the red colored regions with labels (n, m) indicating the electron occupancy on the left and right dot. Charge transitions appear in the derivative of V_{rf} as black and yellow lines.

Focusing on the $(2,0)-(1,1)$ transition, Fig. 4(a) shows V_{rf} as a function of V_R and V_L with each data point averaged 32
times. In the device studied, a change in QPC conductance of ∼1% (∼0.003 e²/h) is associated with an electron transition between (1,1) and (2,0). Using the measured conductance sensitivity $S_\text{C} = 5 \times 10^{-5} e^2/h \text{ Hz}^{-1/2}$, we find a charge sensitivity of $\sim 10^{-3} e \text{ Hz}^{-1/2}$, i.e., $\sim 5 \mu s$ is needed to perform charge readout with SNR of unity for this device.

Coupling rf power to the QPC has two effects on the rf carrier: an electrical delay between the room temperature un-blanked carrier and the QPC and a cross coupling using SONNET SUITES software. This interval measurement scheme. Each pixel is an average over of an integration time $t_{\text{int}} = 60 \mu s$. Black trace is V_rf which is sampled for $t_\text{int} = 60 \mu s$ following the measurement trigger (red trace). An electrical delay between the room temperature un-blank trigger and V_rf is observed.

High-fidelity readout in the present device is limited by the small coupling between the QPC and the double dot, a device parameter that can be increased considerably by improved sample design, as demonstrated, for example, in Ref. 14. The rf-QPC may also be useful in detecting small changes in mesoscopic capacitance28 that alter its resonance frequency and in the simultaneous measurement of many rf-QPCs using multiplexing techniques.29,30

We thank M. J. Biercuk, L. DiCarlo, E. A. Laird, D. T. McClure, and Y. Zhang for technical contributions. We especially thank J. R. Petta for experimental contributions including fabrication of the sample used. This work was supported by DARPA, DTO, NSF-NIRT (EIA-0210736), and Harvard Center for Nanoscale Systems. Research at UCSB supported in part by QuEST, an NSF Center.

21. CoiCraft 1206CS-821XL.
22. Mini-Circuits mixer ZP-3MH and directional coupler ZEDC-15-2B.
23. CoilCraft 1206CS-821XL.
25. The circuit board was designed to minimize parasitic capacitance and cross coupling using SONNET SUITES software.
28. Mini-Circuits ZASWA-2-50DR.